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Single-molecule chemical reactions yield insight into fluctuation phenomena that are obscured in the mea-
surement of the ensemble of molecules. Kramers escape problem is investigated here in a framework suitable
for single-molecule reactions. In particular we obtain distributions of escape times in simple limiting cases,
rather than their mean, and investigate their sensitivity on initial conditions. Rich physical behaviors are
observed: sub-Poissonian statistics when the dynamics is only slightly deviating from the Newtonian, super-
Poissonian behavior when diffusion is dominating, and Poissonian behavior when Kramers original conditions
hold. By varying initial conditions escape time distributions can follow a �usual� exponential or a �−3/2 decay,
due to regular diffusion. We briefly address experimental results that yield the �−3/2 behavior �with cutoffs� and
propose that this behavior is universal.
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Chemical reaction of a single molecule evolving between

two states A�B or of two species A+B�AB is now fol-
lowed in many laboratories using single-molecule spectros-
copy techniques �1–7�. Such experiments yield detailed sta-
tistical information on chemical conformational changes, and
simple chemical processes in condensed phase environments,
for example the distribution of occupation times of states A
and B in the process A�B. Such information is impossible
to obtain when measurements are made on many molecules,
since the ensemble averaging wipes out the detailed informa-
tion found on the single-molecule level. For ensemble of
molecules, usually simple reactions are assumed to follow a
rate process.

For ensemble of molecules undergoing a chemical reac-
tion, classical concepts like reaction coordinate, and rate
equations, work well in many cases. In particular, Kramers
model �8,9� for activation over a barrier is a fundamental tool
for modeling chemical reactions in condensed phase environ-
ments. In this paper we analyze Kramers problem, in a
framework of single molecules. We first discuss Kramers
original approach, and its limitations in the single-molecule
domain.

Kramers describes a chemical reaction in terms of a reac-
tion coordinate x�t�. The complicated interaction of the
chemical species with their environment is replaced with a
stochastic one-dimensional approach. The coordinate x�t�
evolves in a deterministic force field V�x�, and is also
coupled to a thermal heat bath. The reaction coordinate is
supposed to escape a metastable state. The inverse of the
average time of escape ���, from the bottom of the well,
serves as an estimate on the ensemble averaged reaction rate.
Two important regimes of Kramers problem are the under-
damped and overdamped limits. Many refinements, non-
trivial results and generalizations of Kramers problem are
known, e.g., Kramers turn-over behavior, quantum effects,
and non-Markovian generalizations �e.g., �10–12�; see �9�
for a review�. Experimental validation of the theory is also
obtained �13�.

At least three aspects of Kramers problem must be revised
in the context of the single-molecule chemical reaction. The

most obvious one is that now we must consider the distribu-
tion of occupation times in a chemical state, and not limit the
theory to averaged escape rates. Previous work considered
temporal dependence of the rate �14,15� until it reaches an
equilibrium value in a single escape �transition� event, or the
transient behavior after the particle injection close to the bot-
tom of the well �16�. The idea of fluctuating rates in multiple
transitions, in the context of single-molecule experiments has
been scrutinized and used in, e.g., �1,17–19�. A second issue
is the sensitivity of single-molecule chemical reactions to
initial conditions. Consider the ongoing chemical reaction
A�B. For example, using fluorescence resonance energy
transfer �FRET� methods, one may follow the closing �state
A� and opening �state B� of a large molecule �4–6,20,21�.
The experimental data then yields the string of occupation
times ��A

1 ,�B
2 ,�A

3
¯ �. Following Kramers, assume that such

events are described by a reaction coordinate, which goes
over a single barrier, to cross from state A→B and vice
versa. Also we assume that a measurement may distinguish
between state A and state B, as is shown in many experi-
ments. In terms of the reaction coordinate this means that
when x�t��xb the system is in the state A; otherwise it is in
the state B and xb is the boundary �usually and conveniently
assumed to be at the top of the potential barrier�. Then, im-
mediately after the transition event from say A→B, the re-
action coordinate is in close vicinity to xb. Thus a short time
after the transition from state A→B there is an increased
likelihood for a back transition B→A. This possibility is
expected to yield bunching of chemical activity on the time
axis, i.e., to intermittency where strong activity is observed
for some period of time followed by periods of lesser activ-
ity. Of course to observe such effects the resolution time in
the experiments must be short compared to relaxation times
of the dynamics. A third important point is that in single-
molecule experiments, an additional length scale � is intro-
duced into the problem. For example, the radius of the laser
illumination field, or the Förster length scale in FRET experi-
ments �4,21�. Roughly, in the reaction A�B, a fluorescence
signal is recorded if an acceptor and donor are within a range
of Förster radius from each other �state A� while otherwise
the signal is zero �state B�. In terms of the reaction coordi-
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nate, this implies that when x�t���, the system is in the state
A; otherwise it is in the state B. The point to notice is that in
principle, � can be anywhere along the reaction coordinate.
In particular the classical approach of an escape from a bot-
tom of the well over a maximum in the potential field is not
expected to be general.

Hence we investigate Kramers escape problem, obtaining
distribution of escape times. With initial conditions both in
vicinity of the escape point and far from it. We classify the
deviations from exponential behaviors, and show that in
many cases rate concept is not valid. In particular we classify
a turnover behavior from power-law behavior to exponential,
and show that the power-law behavior is general.

Model 1. We consider a classical particle undergoing un-
derdamped diffusion in a harmonic potential well. As well
known, the relevant coordinate for underdamped motion is
the action I. The probability density function �PDF� P of
finding the particle with action I obeys the Fokker-Planck
equation

�P

�t
= �

�

�I
	IP +

2�kBT

�
I
�P

�I

 , �1�

where � is the harmonic frequency, E is the particle energy,
kBT is the thermal energy, and � is the damping coefficient;
��� �see Fig. 1; I=2�E /� for constant ��. In what follows
we use dimensionless time �=�t and action I= I� /2�kBT.
Let 	��� be the PDF of escape times from I0 to Iesc
I0.
Mathematically we use absorbing boundary conditions at
Iesc, so that 	��� is the first passage time distribution �FPTD�
from I0 to Iesc. We obtained the Laplace �→u transform of
	���, using known solution to Kummer’s equation �22,23�.
We find

	̂�u� =
1F1�u;1;I0�

1F1�u;1;Iesc�
, �2�

where 1F1�a ;b ;c� is the regular confluent hypergeometric
function. Since 1F1�0;b ;c�=1 the function 	��� is normal-
ized to 1. We note that a second presentation of the solution
in terms of an infinite sum of exponentially decaying modes
is possible, in time domain. However, as we shall show now
for an important parameter regime, one cannot replace such
standard eigenfunction solutions with a summation over a
finite number of modes consisting of a few exponential func-

tions; rather, the solution exhibits a power-law behavior.
To quantify deviations from exponential statistics, we use

the parameter

Q =
�2

���2 − 1,

where ��� is the average escape time and �2= ��2�− ���2 is its
variance. If we have Poissonian behavior consistent with a
rate equation approach, then Q=0. When the dynamics is
Newtonian �i.e., diffusion is weak� the PDF of escape time is
narrow, leading to Q�0, a sub-Poissonian behavior. On the
contrary, if the PDF of escape times is widespread, there is a
super-Poissonian behavior and Q
0. Using the small u ex-
pansion of the exact solution, we find

��� = A�Iesc� − A�I0� , �3�

and

�2 = A2�Iesc� − A2�I0� − 2�B�Iesc� − B�I0�� , �4�

with

A�z� = �
n=1

�
zn

nn!
and B�z� = �

n=2

� zn� j=1

n−1
1/j

nn!
. �5�

In Fig. 2 we plot Q+1 vs I0 for three cases where Iesc�1
�escape over a shallow barrier�, Iesc=1 and Iesc
1 �escape
over a large barrier�. As I0→Iesc, namely the case when the
chemical reaction starts close to the escaping zone, we ob-
serve Q→�, i.e., strong super-Poissonian behavior. For
Iesc
1 we do not expect, and indeed do not find, an expo-
nential behavior, since the barrier is not high. Here, depend-
ing on initial position, either sub- or super-Poissonian behav-
ior is generally observed. As I0 becomes closer to Iesc,
diffusion in Eq. �1� becomes more dominant than the
deterministic drift, and hence Q grows. Conversely, when
I0�Iesc and Iesc
1 drift becomes more important, leading
to negative Q. However, diffusion can never be neglected as
it is the only mechanism leading to an eventual escape from
the well. Note that always Q�−1/2 and the absolute mini-
mum of Q=−1 is unachievable in this model. For Iesc
1

FIG. 1. �Color online� Escape from a metastable well. In the
underdamped case, the relevant coordinate is the action I, which is
related to the energy E of the particle by I=2�E /�. In the over-
damped case, the relevant coordinate is position x in real space.

FIG. 2. �Color online� Q+1 as a function of r=I0 /Iesc. The full
line is the asymptotic line for small Iesc, given by �1+r� / �2�1
−r��. The dashed line is for Iesc=1 and the dot-dashed line is for
Iesc=10. Notice the logarithmic scale. Two generic behaviors are
observed: �i� if Iesc
1, a smooth transition from sub-Poissonian to
super-Poissonian behavior is observed; �ii� if Iesc
1, a Poissonian
behavior is found until I0�Iesc and then a sharp transition from
Poissonian to super-Poissonian behavior is observed.
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and I0 sufficiently below Iesc, we have exponential behavior
and Q�0. The latter case corresponds to Kramers’s original
treatment of escape from a deep metastable state.

We now consider 	���. In Laplace space and in the limit
u�max�1,1 /I0� we use �22� to reduce Eq. �2� to

	̂�u� 
 	Iesc

I0

1/4

e�I0−Iesc�/2e−2�u��Iesc−�I0�. �6�

The important thing to notice is the nonanalytical behavior of
this asymptotic solution, namely the term of the form e−�u.
This term is an indication for power-law behavior �with
some cutoffs� since if 	̂�u�=e−�u for all u then 	���
�−3/2

for large � �e.g., �24��. To find � for which 	���
�−3/2, we
have to demand the validity of Eq. �6� for small �u��Iesc

−�I0�, while u is large. This yields

��Iesc − �I0�2 � � � min�1,I0� , �7�

so that the reaction should start in the vicinity of the escaping
point. This behavior is demonstrated in Fig. 3.

When �→0 we find 	���→0, a nonexponential behavior.
This behavior is due to the fact that it takes the particle a
certain amount of time to reach the boundary. More quanti-
tatively, for short times Eq. �6� is always a good approxima-
tion for 	̂�u�, leading to

	��� 
 	Iesc

I0

1/4

e�I0−Iesc�/2��Iesc − �I0�

�
exp�− ��Iesc − �I0�2/��

���3/2
. �8�

Model 2. We turn now to the other limit of particle
diffusion—namely to the overdamped limit—and demon-
strate the deviation from Poissonian behavior. The relevant
coordinate here is the spatial coordinate x. Restricting our-
selves to one spatial dimension, the following Fokker-Planck
equation is then obtained:

�P�x,t�
�t

= �m��−1� �

�x
U��x� + kBT

�2

�x2�P�x,t� , �9�

where m is the particle mass and F�x�=−U��x� is the deter-
ministic part of the force, due to potential field. We consider

two cases, when U�x�= ±m�2x2 /2 near the escape point, i.e.,
parabolic and inverted parabolic potential, with ���. We
define dimensionless time �= t /� and position y=x / l, where
�=��−2 and l=�kBT / �m�2�.

Parabolic potential. We are interested in the FPTD from
initial position y0 to yesc. This function is known in Laplace
space and is given by �e.g., �23��

	̂�u� =
D−u�− y0s�ey0

2/4

D−u�− yescs�eyesc
2 /4

=
H−u�− y0s/�2�

H−u�− yescs/�2�
, �10�

where D��z� is the parabolic cylinder, or Weber function,
H−u�z� is the generalization of Hermite polynomials used in
MATHEMATICA, and s=sgn�yesc−y0�. The PDF 	��� is nor-
malized to 1. Using various formulas from �22� we can sim-
plify Eq. �10� for large u�max�yesc

2 ,y0
2�,

	̂�u� 
 exp� y0
2 − yesc

2

4
�e−�u�yesc−y0�,

exhibiting a nonanalytical behavior of the e−�u type similar to
the previous example. In order to have the 	�����−3/2 scal-
ing we thus have to demand the validity of this approxima-
tion for small �u�yesc−y0��1. Together with the condition
u�max�yesc

2 ,y0
2� it leads to

�yesc − y0�2 � � �
1

max�yesc
2 ,y0

2�
. �11�

As we are interested in the escape over the barrier, we have
either y0�yesc if yesc
0, or y0
yesc if yesc�0. In a deep
well �low T�, if �y0�� �yesc�, then 	��� will be nearly expo-
nential, similar to Model 1. If the well is not deep, or y0 and
yesc are close, Q shows a super-Poissonian behavior. Notice-
ably negative Q is only possible if the initial position of the
particle is on the other side of the well from the escape point,
and high above it in energy �when y0 /yesc becomes very
negative�.

Inverted parabolic potential. The FPTD is now given by

	̂�u� =
D−1−u�− y0s�

D−1−u�− yescs�
exp� yesc

2 − y0
2

4
� . �12�

The normalization is

	̂�0� =
1 + erf�y0s/�2�

1 + erf�yescs/�2�
� 1.

The normalization is less than 1 in this case because some
particles will escape in the direction of −s�, where the po-
tential drops unbounded. Of course, if the particles are not
allowed to escape to infinity, so that the only exit is through
yesc then the normalization should be 1. However, the above
formulas serve as a good approximation for a deep well, if
we consider the behavior around the parabolically shaped
escape barrier at sufficiently short times. Similar to the pre-
vious section, for u�max�1,yesc

2 ,y0
2�,

	̂�u� 
 exp� yesc
2 − y0

2

4
�e−�u�yesc−y0�,

and the condition for observing �−3/2 scaling is

FIG. 3. �Color online� Distribution of escape times 	��� in the
underdamped case. At early and intermediate times 	��� is gov-
erned by Eq. �8�, which exhibits a power-law decay �−3/2 at inter-
mediate times �thin line�, if the initial condition I0 is close to the
escape condition Iesc. At later times, there is an exponential decay
with rate given by Kramers rate.
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�yesc − y0�2 � � �
1

max�1,yesc
2 ,y0

2�
.

In this paper, we demonstrated non-Poisson statistics of
escape from a potential well, which contradicts reaction rate
approach used for ensemble �bulk� dynamics. Both sub- and
super-Poisson statistics were observed, indicated by the sign
of the Q parameter. For small travel distances, and for a
shallow well in the overdamped case, scaling 	��−3/2 is
dominant and gives rise to a strong super-Poissonian statis-
tics. The �−3/2 behavior is a result of diffusion processes �25�.
The occurrence of such a behavior is easily understood if one
realizes that in many cases a Fokker-Planck equation with
variable coefficients �e.g., Eq. �1�� can locally be approxi-
mated by an equation with constant coefficients, i.e., by an
advection-diffusion equation. As travel distance increases,
characteristic time grows and drift term can compete with
diffusion, allowing for Poissonian and sub-Poissonian behav-
ior. In the underdamped case, sub-Poissonian behavior is
found in many cases �see Fig. 2�, in the overdamped case, we
may observe sub-Poissonian behavior only under special
conditions. As is well known, near-exponential 	��� is ob-
tained for a deep well if initial energy is sufficiently below
the escape energy.

Finally let us compare our model results to experiments
on single molecules and to other models. Blinking nanocrys-
tals exhibit a behavior of occupation times of on and off

times close to �−3/2 with cutoffs �26–28�. The blinking is
believed to describe charging of a single nanocrystal �the
charged nanocrystal can be off�. Shimizu et al. �28� briefly
suggested a diffusion in energy space to describe such be-
havior; however, they did not consider the effect of dissipa-
tion and temperature, which are always present in case of
diffusion in energy space. Recent experiments on diffusing
beads that come in and out of focus of a laser field also
exhibit the �−3/2 behavior �29�. Occupation times in single-
molecule Raman experiments are described also by �−3/2 be-
havior �30�. The dynamics of single ion channels sometimes
exhibit the �−3/2 �31,32�. Goychuk and Hänggi �32� sug-
gested a model based on a reaction where space is divided
into two: a zone with free diffusion �which yields the 3/2
law� and a zone where the reaction coordinate is climbing
over a potential field. While all these systems and models are
very different, they all exhibit a universal tendency for a �−3/2

and in several cases an exponential cutoff is observed. Thus
the turnover behavior we found, from a power-law behavior,
to an exponential behavior, will be a useful concept for the
single molecule domain. Further we do not expect this be-
havior to be limited to Kramers problem, since diffusion is
expected to control short time dynamics of many reactions.
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